标题 | 简介 | 类型 | 公开时间 | ||||||||||
|
|||||||||||||
|
|||||||||||||
详情 | |||||||||||||
[SAFE-ID: JIWO-2024-1082] 作者: ecawen 发表于: [2017-11-16]
本文共 [994] 位读者顶过
安全厂商卡巴斯基发布了2018年威胁预测安全报告,主要预测包括更多的供应链攻击;更高端的移动恶意软件;类似BeEF的渗透分析框架将会增多;复杂的固件攻击;破坏性的攻击将继续发展;将会有更多的密码技术被破解;电子商务的身份认证陷入危机;更多的路由器和调制解调器被入侵;社交网络政治化的混乱。虽然卡巴斯基没有明确发表关于APT的预测,但多个部分都提及了APT的影响。其他热点包括关键基础设施、智能汽车、智能医疗、金融服务、加密货币的预测。
As hard as it is to believe, it’s once again time for our APT Predictions. Looking back at a year like 2017 brings the internal conflict of being a security researcher into full view: on the one hand, each new event is an exciting new research avenue for us, as what were once theoretical problems find palpable expression in reality. This allows us to understand the actual attack surface and attacker tactics and to further hone our hunting and detection to address new attacks. On the other hand, as people with a heightened concern for the security posture of users at large, each event is a bigger catastrophe. Rather than consider each new breach as yet another example of the same, we see the compounding cumulative insecurity facing users, e-commerce, financial, and governmental institutions alike.
As we stated last year, rather than thinly-veiled vendor pitching, our predictions are an attempt to bring to bear our research throughout the year in the form of trends likely to peak in the coming year.
As a snapshot scorecard of our performance last year, these are some of our 2017 predictions and some examples where relevant:
Espionage and APTs:
Financial Attacks:
Ransomware:
Industrial threats:
IoT:
Information Warfare:
When everything else fails, they are likely to take a step back and re-evaluate the situation. During such a re-evaluation, threat actors can decide a supply chain attack can be more effective than trying to break into their target directly. Even a target whose networks employ the world’s best defenses is likely using software from a third-party. The third party might be an easier target and can be leveraged to attack the better protected original target enterprise.
During 2017, we have seen several such cases, including but not limited to:
These attacks can be extremely difficult to identify or mitigate. For instance, in the case of Shadowpad, the attackers succeeded in Trojanizing a number of packages from Netsarang that were widely used around world, in banks, large enterprises, and other industry verticals. The difference between the clean and Trojanized packages can be dauntingly difficult to notice –in many cases it’s the command and control (C&C) traffic that gives them away.
For CCleaner, it was estimated that over 2 million computers received the infected update, making it one of the biggest attacks of 2017. Analysis of the malicious CCleaner code allowed us to correlate it with a couple of other backdoors that are known to have been used in the past by APT groups from the ‘Axiom umbrella’, such as APT17 also known as Aurora. This proves the now extended lengths to which APT groups are willing to go in order to accomplish their objectives.
Our assessment is that the amount of supply chain attacks at the moment is probably much higher than we realize but these have yet to be noticed or exposed. During 2018, we expect to see more supply chain attacks, both from the point of discovery and as well as actual attacks. Trojanizing specialized software used in specific regions and verticals will become a move akin to waterholing strategically chosen sites in order to reach specific swaths of victims and will thus prove irresistible to certain types of attackers.
Due to the fact that iOS is an operating system locked down from introspection, there is very little that a user can do to check if their phone is infected. Somehow, despite the greater state of vulnerability of Android, the situation is better on Android where products such as Kaspersky AntiVirus for Android are available to ascertain the integrity of a device.
Our assessment is that the total number of mobile malware existing in the wild is likely higher than currently reported, due to shortcomings in telemetry that makes these more difficult to spot and eradicate. We estimate that in 2018 more high-end APT malware for mobile will be discovered, as a result of both an increase in the attacks and improvement in security technologies designed to catch them.
The incredible prices that some government customers have most certainly chosen to pay for these exploits mean there is increasing attention paid towards protecting these exploits from accidental disclosure. This translates into the implementation of a more solid reconnaissance phase before delivering the actual attack components. The reconnaissance phase can, for instance emphasize the identification of the exact versions of the browser used by the target, their operating system, plugins and other third-party software. Armed with this knowledge, the threat actor can fine tune their exploit delivery to a less sensitive ‘1-day’ or ‘N-day’ exploit, instead of using the crown jewels.
These profiling techniques have been fairly consistent with APT groups like Turla and Sofacy, as well as Newsbeef (a.k.a. Newscaster, Ajax hacking team, or ‘Charming Kitten’), but also other APT groups known for their custom profiling frameworks, such as the prolific Scanbox. Taking the prevalence of these frameworks into account in combination with a surging need to protect expensive tools, we estimate the usage of profiling toolkits such as ‘BeEF‘ will increase in 2018 with more groups adopting either public frameworks or developing their own.
The fact that commercial-grade UEFI malware exists has been known since 2015, when the Hacking team UEFI moduleswere discovered. With that in mind, it is perhaps surprising that no significant UEFI malware has been found, a fact that we attribute to the difficulty in detecting these in a reliable way. We estimate that in 2018 we will see the discovery of more UEFI-based malware.
The Shamoon 2.0 attacks seen in November 2016 targeted organizations in various critical and economic sectors in Saudi Arabia. Just like the previous variant, the Shamoon 2.0 wiper aims for the mass destruction of systems inside compromised organizations. While investigating the Shamoon 2.0 attacks, Kaspersky Lab also discovered a previously unknown wiper malware that appears to be targeting organizations in Saudi Arabia. We’ve called this new wiperStoneDrill and have been able to link it with a high degree of confidence to the Newsbeef APT group.
In addition to Shamoon and Stonedrill, 2017 has been a tough year in terms of destructive attacks. The ExPetr/NotPetya attack, which was initially considered to be ransomware, turned out to be a cleverly camouflaged wiper as well. ExPetr was followed by other waves of ‘ransomware’ attacks, in which there is little chance for the victims to recover their data; all cleverly masked ‘wipers as ransomware’. One of the lesser known facts about ‘wipers as ransomware’ is perhaps that a wave of such attacks was observed in 2016 from the CloudAtlas APT, which leveraged what appeared to be ‘wipers as ransomware’ against financial institutions in Russia.
In 2018, we estimate that destructive attacks will continue to rise, leveraging its status as the most visible type of cyberwarfare.
In August 2016, Juniper Networks announced the discovery of two mysterious backdoors in their NetScreen firewalls. Perhaps the most interesting of the two was an extremely subtle change of the constants used for the Dual_EC random number generator, which would allow a knowledgeable attacker to decrypt VPN traffic from NetScreen devices. The original Dual_EC algorithm was designed by the NSA and pushed through NIST. Back in 2013, a Reuters report suggested that NSA paid RSA $10 million to put the vulnerable algorithm in their products as a means of subverting encryption. Even if the theoretical possibility of a backdoor was identified as early as 2007, several companies (including Juniper) continued to use it with a different set of constants, which would make it theoretically secure. It appears that this different set of constants made some APT actor unhappy enough to merit hacking into Juniper and changing the constants to a set that they could control and leverage to decrypt VPN connections.
These attempts haven’t gone unnoticed. In September 2017, an international group of cryptography experts have forced the NSA to back down on two new encryption algorithms, which the organization was hoping to standardize.
In October 2017, news broke about a flaw in a cryptographic library used by Infineon in their hardware chips for generation of RSA primes. While the flaw appears to have been unintentional, it does leave the question open in regards to how secure are the underlying encryption technologies used in our everyday life, from smart cards, wireless networks or encrypted web traffic. In 2018, we predict that more severe cryptographic vulnerabilities will be found and (hopefully) patched, be they in the standards themselves or the specific implementations.
In 2017 we pronounced the death of Indicators of Compromise. In 2018, we expect to see advanced threat actors playing to their new strengths, honing their new tools and the terrifying angles described above. Each year’s themes and trends shouldn’t be taken in isolation – they build on each other to enrich an ever-growing landscape of threats facing users of all types, be it individuals, enterprise, or government. The only consistent reprieve from this onslaught is the sharing and knowledgeable application of high-fidelity threat intelligence.
While these predictions cover trends for advanced targeted threats, individual industry sectors will face their own distinct challenges. In 2018, we wanted to shine the spotlight on some of those as well – and have prepared predictions for the connected healthcare, automotive, financial services, and industrial security sectors, as well as cryptocurrencies. You can find them all here!
Threat Predictions for Automotive in 2018 |